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Statistical Mechanics 
and the Gauss Principle 
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In an essentially statistical approach to statistical mechanics, it is seen that 
the Gauss principle of the arithmetic mean may be taken as the starting 
point. The equations from which the subject can be built up are deduced 
from the Gauss principle of the arithmetic mean. 

KEY W O R D S :  Gauss principle of ari thmetic mean; most probable value; 
best estimate; location parameter. 

1. I N T R O D U C T I O N  

The problems of statistical mechanics can be solved by several methods with 
equal success. (1) A physicist, to solve his problem, chooses one conveniently 
according to this training and practice. SchrSdinger (2) and Born (~/discussed 
two of these methods in some detail. These methods are (1) the method of 
most probable values of Boltzmann and Planck, and (2) the method of mean 
values of Darwin and Fowler. 

With the frequency interpretation of probability and also with regard to 
laws of large number, (~) the basic idea of the most probable value is assumed 
to be that the observed values are most probable values. In the other method, 
the mean values of a quantity are actually observed. The reconciliation of 
these two basic ideas can be seen in the Gauss princicple, which may be 
stated as, "For  a set of observations of an unknown quantity, the probability 
distribution would be such that the probability would be maximum when the 
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best estimate of a location parameter, used in the definition of probability, 
would be the arithmetic mean." In other words, the probability distribution 
associated with an assembly is such that the mean value of an observable 
quantity is the most probable value (the best estimate). The Gauss principle 
was first formulated and used in the theory of errors of observations/5~ 
Its use and significance as a method of estimation are well known, c6~ 

Here, it is shown that the usual formulas ~1-3,71 of statistical mechanics 
can be obtained in the usual form. 

2. P R E L I M I N A R Y  O B S E R V A T I O N S  

For  the application of the Gauss principle, the location parameters need 
to be chosen suitably. It is now clear (v) that if some quantity other than the 
energy or the like be chosen, the usual statistical mechanics cannot be 
developed. This point has also been emphasized in an axiomatic development 
of thermodynamics. (9) If, as in earlier, essentially statistical approaches (s,z~ to 
investigating problems of statistical mechanics, energy and number of 
particles are chosen as basic variables (or variates) and the Gauss principle 
is applied, the usual results of statistical mechanics are obtained. 

3. DESCRIPTION OF SYSTEM (ASSEMBLY) 

Let ~1, e2 .... be the energies and n,, n2 .... the numbers of particles of the 
system at different states and let the state defined by (E~, nj) be with 
frequencies f~j and probabilities Pij �9 After the postulate of statistical inde- 
pendence of this probability of states of the entire system (assembly), 
consisting of particles in repeated observations, the probability of the entire 
system being in a number of states is 

P = I-1 (1) 
CJ s 

~1 and a2 being location parameters (to be identified with the mean energy 
and mean number of particles). Now, the first task in the essential statistical 
approaches is to determine the form of a function of p(E, n; ~a, a2) along 
with that to determine the parameters in terms of sample data, here, the 
observed values of E and n taken as known. Here, this will be done from the 
Gauss principle. 

4. C A L C U L A T I O N S  

According to the Gauss principle, 

= 11 P~j 
i j  

(2) 
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is max imum,  i.e., 

log P = ~ f i j  log p(ei , n~; o~ 1 , o~2) (3) 
i j  

is m a x i m u m  along with the conditions 

~ f i ~ ( e i -  oh) = 0 (4) 
ij  

XAj(,~- ~2 = o (5) 
ij 

where % and % are location parameters  of  the distr ibution signifying the 
mean  values ~ and g of  E's and n's. 

On the assumpt ion  that  the partial  derivatives up to the second order 
exist, the above conditions can be written as 

E f / J r  n j  ; 0~1, 0~2) = 0 (6) 

~AAbe( , i ,  nj ; a 1 , as) = 0 (7) 

along with the restrictions given by (4) and (5), where 

r = ~(logp)/~% and ~b.2 = e(logp)/O~2 (8) 

Now,  by applicat ion of  the me thod  of  undetermined multipliers for  the 
first variat ions of  r and r with respect to el and n j ,  we get 

E f / j [ { r  - -  ~/cl} Agi  ~- {r - -  ale2} AI~j] = O, k = 1, 2 (9) 

where A~a and )lk~ are independent  o f  e's and n's. Since now Ae~ and Anj m a y  
be taken as independent,  we get 

r - -  A~l = 0 and Ckn --  hk~ = 0 (10) 

F r o m  (I0), on account  of  (9) and (5), we get 

O(logp)/Dc% = ~b k = hkl ( ,  - -  oq) ~- Z~z(n - -  %) (11) 

On the assumpt ion  that  for  p, 

e2(logp)/~az e~2 = ?2(log p)/0% e% (12) 

is satisfied, we get 

c%t2 - - ( ~  - ~0  + 

(13) 



130 M.  Dutta 

As e - -  cq and  n - -  ~ can assume values independent ly ,  we get 

0al~/e~ = ~ 2 1 / ~ ,  ~;~1~/~2 = ~A~2/e~ (14) 

and 

~12 = ;~2~ (15) 

The condi t ions  (14) leads to the existence of  the funct ions v I and  v2 such tha t  

with 

vk(~lo, e~z0) = 0, k = 1, 2 (16b) 

and  the condi t ion  (15) leads to the existence o f  a f u n c t i o n / 7  such tha t  

v: = ~ H / & h  and v~ = e 1 7 / ~  with H(c~o , ~o) = 0 (17) 

where ~o  and ~ o  are initial  values o f  cq and c~.  Thus,  f rom (11), we get  

a(logp)/Oo~e = (a/ac~){vx(e - -  Odl) -Jt- 1)2(/// - -  C~2) "q- 1 7 }  ( 1 8 )  

o r  

p(E, n; ~1, c~2) = a~(e, n) exp{vl(E - -  ~a) q- ve(n - -  a2) -t- 17} (19) 

Now,  denot ing  

Z(v l  , v~) = ~ co@i, nj) exp{vz(el - -  ~z) + v2(nJ - -  e~2)} (20) 
i t  

= exp(vxeq q- vzo~ - -  ~r) (21) 

a s  

W e  can easily see tha t  

p(Ei ,  n~; c~ ,  ~2) = 1 (22) 
i j  

---- eq = 6[log Z ( v l ,  v2)]/gv x (23) 

= c~ 2 ---- 8[log Z ( v z ,  v2)]/Ov 2 (24) 

Now,  it is easy to recognize Z ( k '  1 , lt2) as the Z u s t a n d s u m m e  of  Planck (1) or  
the par t i t ion  funct ion of  Da rwin  and  Fowler /v)  Then,  the pa ramete r s  vl 
and  v~ may  be in terpre ted  as usual  and  all other  usual  results of  stat ist ical  
the rmodynamics  (7) can be deduced f rom these results as they are done in 
earl ier  work.  a~ 
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5. C O N C L U D I N G  R E M A R K S  

The above method for the deduction of the basic equation of statistical 
thermodynamics from the Gauss principle can be extended easily and directly 
to the case of more complicated systems when they consist of  different types 
of particles or when considerations of other quantities such as charge or 
momentum are necessary. In earlier workJ 1~ basic equations have obtained 
in two phases, first, by taking the form of the probability functions with the 
help of the Bayes principle or some other suitable principle, and second, 
by estimating the parameters of distributions by the principle of maximum 
likelihood. However, one of the main advantages, of the present method is that 
the form of the probability distribution-function with the proper parameters 
is obtained at the same time as in the method of maximum entropy 
estimation. ~s~ 
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